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An algorithm is developed to significantly reduce the on-node footprint of cross section memory in Monte Carlo
particle tracking algorithms. The classic method of per-node replication of cross section data is replaced by a memory
server model, in which the read-only lookup tables reside on a remote set of disjoint processors. The main particle
tracking algorithm is then modified in such a way as to enable efficient use of the remotely stored data in the particle
tracking algorithm. Results of a prototype code on a Blue Gene/Q installation reveal that the penalty for remote storage
is reasonable in the context of time scales for real-world applications, thus yielding a path forward for a broad range of
applications that are memory bound using current techniques.
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I. Introduction

Typical applications of continuous energy Monte Carlo neutron
transport codes require frequent table lookups of large cross
section data libraries. This is particularly true of nuclear reactor
core analyses, for which a typical full cycle depletion calcula-
tion requires tracking inventories of several hundred nuclides
within the nuclear fuel regions. When temperature dependence
between 300 and 3000 K is included, cross section data lookup
tables can easily exceed 100 GB of memory.(1) Since the cross
section data must be read potentially many times during the
tracking of an individual particle (once per particle per inter-
action or change in material region), and the data is accessed
more or less randomly from interaction to interaction, the stan-
dard approach to achieving good performance involves storing
the entire cross section table in memory for the duration of the
algorithm. For common distributed memory parallel MC imple-
mentations where each processor is assigned an equal subset of
particles to track, the cross section libraries are replicated on
each distributed processing node.

Since the cross section data memory in general far exceeds
per node limits, this brute force strategy is only feasible when
the application is idealized in order to significantly reduce the
volume of cross section data. For classical nuclear reactor core
physics calculations, the problem is typically simplified by sig-
nificantly reducing the actual number of nuclides and material
regions required for robust core analysis, yielding table sizes
that fit in on-node memory (approximately 10 GB is typical).
In addition to falling short of a realistic core simulation, the
heavy memory burden of cross section data also constrains the
size of other important data structures such as interaction tallies
and particle storage, limiting the detail of the largest simulation
that can be carried out.(2)

For large parallel simulations on distributed memory plat-
forms, there is more than enough aggregate memory to accom-
modate cross section tables for a robust reactor analysis. The
key question, though, is how to decompose storage without an
enormous cost to time-to-solution. An algorithm with reduced
memory footprint but much longer integration times is unlikely
to be of practical value. Accordingly, a good metric for suc-
cess of a data decomposition algorithm is to enable sufficient
aggregate storage while limiting the impact on performance to
a reasonable fraction of overall simulation time. In this analy-
sis we develop such an algorithm based on basic principles of
overall locality in per-neutron access patterns of cross section
data and implemented using a set of dedicated tracking proces-
sors to access data on a remote, disjoint set of memory server
processors.

Some have suggested that “bringing the data to the particle”
is a more natural and scalable approach on the trajectory to
exascale computing than “moving the particle to the data” (e.g.
physical space domain decomposition).(3) Moreover, the key
underlying concepts of energy bands or supergroups, which
are the foundation of the present algorithm, have their roots in
early work done in related but distinct contexts, for example
when carrying out Monte Carlo in serial but using external tape
storage, or in devising vectorized algorithms for vector-based
supercomputers of the 1980’s.(4)(5) Romano et al. recently ex-
perimented with decomposing cross section data using remote
memory access operations and, more promisingly, dividing the
tally data into a client-server model.(6)(7) Similar client-server
models have been used successfully in quantum Monte Carlo
calculations.(8) This analysis represents one specific realization
of these general ideas with the goal of gauging feasibility for
use in real-world production codes.
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II. Tracking algorithm

We begin with a simplified abstract representation of the basic
Monte Carlo transport algorithm. Let P = R3 × R+ × S2 × Z
denote the set of particles (neutrons) uniquely defined by a
physical-space position x ∈ R3, energy e ∈ R+ , direction
Ω ∈ S2 (where Sn denotes the n-sphere), and particle tag z ∈ Z+.
Furthermore, let B ⊆ P denote a countable subset of particles
referred to as a neutron batch. A single outer iteration of
the MC algorithm tracks each particle in a batch one-by-one
through a sequence of collisions from birth to death (absorption
or leakage from domain). Each particle interaction at some
position xp requires the lookup of probability distributions to
randomly sample a number of different quantities, e.g. the
type of interaction (e.g. elastic scattering, absorption, inelas-
tic scattering), the scattering angle, scattering energy, and so
forth. The precise details of the calculated quantities are not
important for the present analysis. The key issue is that at each
interaction point the local macroscopic cross sections need to
be calculated by summing over the microscopic cross sections
for each nuclide in the given material region. The microscopic
cross sections are then read one-by-one from the lookup tables.
With hundreds of nuclides present in the fuel region, this is an
expensive operation that can take up the majority (up to 85%)
of the total execution time of a typical execution of the code.
Once the macroscopic cross sections are calculated each event
can be sampled probabilistically.

The macroscopic cross section calculation process can be
described more precisely as follows. Let I = {0, 1, ..., n − 1}
denote the set of all n nuclides and M = {0, 1, ..., k − 1} denote
the set of all k material regions in the reactor core (both are
identified by an integer tag). Let the atomic density function
ρ : M× I → R denote the atomic density of a given nuclide in a
given material region, and let G : R3 → M denote the material
lookup function— i.e. G selects the material region associated
with a given particle position xp ∈ R3. Note, ρ( j,m) = 0 for
a nuclide j that is not present in a given material region m.
Finally, define a microscopic cross section table for nuclide
j ∈ J as an element of (R+)NE( j), where NE( j) denotes the
number of tabulated cross section energy levels for nuclide j. If
we similarly let J = {0, 1, 2, ..., l − 1} denote the set of relevant
interaction types for a given simulation, then, Algorithm 1
shows a high level description of the key components of the
conventional particle tracking algorithm.

The key operation in Algorithm 1 occurs at line number 6.
It requires a separate load operation at each iteration of the
inner loop— specifically, a table lookup of the microscopic
cross section for nuclide j for interaction type i at energy level
E. This is costly for several reasons. First, a typical neutron
undergoes dozens of interactions and surface crossings from
birth to absorption in a reactor core, and the fuel regions of a
reactor core contain hundreds of nuclides; thus, each individual
neutron could easily require several thousand microscopic cross
section lookups.

Furthermore, the size of the microscopic cross section table
and unpredictable access patterns yield little cache reuse and
are unfriendly to data prefetching. Some nuclides require more
than 100, 000 tabulated energy levels for a single interaction

Algorithm 1 Classic Monte Carlo algorithm

1: for p ∈ B do . for each particle in batch
2: repeat . until particle is absorbed
3: m← G(xp) . lookup material at xp

4: for i ∈ I do . for each nuclide
5: for j ∈ J do . for each interaction type
6: σ← F(xp, i, Ep) . lookup microscopic xs
7: Σ← Σ + ρ(m, i)σ . accumulate macro xs
8: end for
9: randomly sample interaction

10: update particle properties
11: end for
12: until absorbed(p)
13: end for

type at a single temperature value. With a dozen reaction types,
hundreds of nuclides and approximately fifty thermal energy
levels required for an accurate calculation, the tabulated cross
section data can exceed 100 GB of memory.(9) And though
neutrons tend to travel from higher to lower energies (thermal
upscattering is possible in LWRs), the precise cross section
values jump around from interaction to interaction and are
unpredictable in their details.

Algorithm 2 Tracking processors in EBMS algorithm

1: partition [E0, Emax] into nb energy bands
2: for 0 < n ≤ nb do
3: receive σ(En−1 : En) . get x-section data from memory

processor
4: for p ∈ Bn do . for each particle in band n
5: repeat . until particle is absorbed or E(p) < En−1
6: m← G(xp) . lookup local material
7: for i ∈ I do . for each nuclide
8: for j ∈ J do . for each interaction type
9: σ← F(xp, i, Ep) . lookup microscopic

xs
10: Σ← Σ + ρ(m, i)σ . accumulate macro

xs
11: end for
12: randomly sample interaction
13: update particle properties
14: end for
15: until absorbed(p) or energy(p) < En

16: end for
17: n← n − 1
18: end for
19: send termination signal to memory processors

III. The energy band memory server algorithm

Given the size of the neutron cross section tables, it is natural to
seek a decomposition of cross section data across processors to
reduce the on-node memory footprint. A naive implementation
of this approach, however, is not likely to perform adequately
in a production code. The particle history method is typically
parallelized by carrying out Algorithm 1 independently on each
processing core for a subset of the neutron batch B (and then
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synchronizing tallies at the end of each batch). When done this
way, there is no affinity of the particles on a given processor
to any subset of the cross section data, and thus this approach
would require extremely frequent off-node communication of
small amounts of data and and thus be performance limited by
the off-node latency. Ideally, a decomposition strategy could be
developed that both limited local cross section memory storage
as well as minimized off-node read requests (i.e. that optimized
the proximity of the data to the neutrons).

Our proposed approach, which we call the energy band mem-
ory server algorithm (EBMS), exploits the gross path through
energy space of each individual neutron, independent of the
details. Neutrons are born at very high energies (∼ 2 MeV)
and slow down through series of scattering interactions through
the thermal regime (.025 eV). In an LWR this path is for the
most part unidirectional— i.e. particles move from higher to
lower energies (some upscattering occurs in the thermal en-
ergy regime). The EBMS algorithm partitions the cross section
data into nb energy bands Enb, Enb−1, ...E1 and distributes them
across the nodes of a distributed memory machine (different
choices for decomposition strategy are discussed in the next
section). The cross section data is no longer local to the node,
and the new tracking algorithm requires moving the data in
bands to the tracking processors. As depicted in Algorithm
2 above, each processor starts by loading the highest energy
band and then tracking each particle one-by-one until it is ei-
ther absorbed or leaves the energy band. In the latter case the
tracking is resumed when the appropriate energy band is loaded.
The process continues until all particles are absorbed, so that
if upscattering occurs an outer iteration may be required to
complete the simulation. In practice this will be uncommon
and we expect 2-3 loop iterations maximum to fully complete
the algorithm.

IV. Analysis of EBMS

In this section, we derive an expression for the expected total
runtime of the EBMS algorithm. The goal of a Monte Carlo
neutron problem is to track p neutrons through the material
domain from generation until absorption or departure from the
domain. This number p can be in the millions or billions for
the highest fidelity simulations. Organizing the processing and
memory resources for this task in the most efficient way is the
ultimate goal of the application developer. The task requires
directing a complex data flow of reading cross section data,
recording interaction tallies, and updating neutron properties in
memory.

Let M be the total size of cross section data measured in
GB to be used in the application. We consider this param-
eter fixed for each problem and dependent on the particular
physical regime and the computational accuracy required. One
obvious advantage of the EBMS setup is its ability to enable
more accurate neutronic simulations by accommodating cross
section data sets larger than the on-node memory limit. Even
in simplified applications where M is less than the on-node
memory limit, there are advantages to not replicating the cross
section data across processors; for example, avoiding repli-
cation frees memory for storing tallies and processing larger

neutron batches.
We partition the cross section data into r equally sized energy

bands, assign each band to a memory processor, and group
memory processors into memory clusters. Assuming that all
processors have the same memory limit, we note that the size
of the bands in GB should not consume all of the memory of a
processor, since the receiving tracking processors will need free
memory for particles and tallies. Therefore, a more judicious
use of memory processors would be to assign several energy
bands to each processor in order to use up all the memory (each
memory processor could own bands at opposite ends of the
energy spectrum in order to avoid communication overlap).
However, this would lead to more complicated contention in
message passing. To avoid these considerations, we can assume
that a cross section band takes up > 50% of on-node memory
and each memory processor in a cluster owns one band.

Let n be the total number of MPI processes available to the
application user. In some cases, each MPI process will corre-
spond to a separate physical node, though we may also consider
a process to be an individual processor core on a shared mem-
ory node. In the classic parallel Monte Carlo algorithm without
cross section decomposition, the n processes independently
track particles at some average rate R =

[
time

particle

]
. Excluding

essential inter-process communication (including reductions
and synchronizations), the overall runtime is approximated by

Tclassic ≈
Rp
n

where Rp is the serial tracking time for p particles.
For a fair evaluation of the EBMS algorithm, we consider

the number of MPI processes n fixed; every added memory
processor comes at the cost of a tracking processor. Let m be
the number of memory clusters, each consisting of r processors,
for a total number of memory processors mr. The total number
of tracking processors is then n − mr and the runtime of the
algorithm can be described by

TEBMS (m, r) ≈
Rp

n − mr
+ max

i≤n−mr
Ki(

n − mr
m

,M, r, α, β)

where Ki is a function representing the total cost of cross section
data movement to the ith tracking process. The first term simply
represents the penalty associated with reallocating tracking
processors as memory processors and is strictly increasing
while max(Ki) is strictly decreasing in r and m.

Predicting the precise cost of data movement is complex. In
each memory cluster each associated tracking processor needs
to move at minimum one band of data from each memory server
(this can be more depending on how many outer iterations
are required to convergence). The intrinsic cost of each data
movement can be modeled approximately as α + βM/r, where
α and β are appropriate values of application-level latency and
inverse bandwidth, respectively. Since there are r bands, the
total cost of data movement for each processor is then αr + βM.

However, this must be seen as a lower bound and certainly
will never be attained in practice— in reality multiple tracking
processors will be attempting to obtain the the same memory
band simultaneously, and application-level contention will sig-
nificantly erode performance. In fact, it is easy to derive the



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

symbol description
α inter-node point-to-point latency
β−1 inter-node point-to-point bandwidth
r energy bands per cluster
m number of memory clusters
n total number of processors
p total number of particles
M total cross section memory
R serial tracking rate in [ time

particle ]

Table 1: Summary of variables used in analysis

worst case scenario for this condition by assuming that access
to each memory process is serialized. That is, each tracking
processor in a cluster will simultaneously attempt to access the
same memory server, and each tracking processor will have
to be served in turn. Given that there are n−mr

m tracking pro-
cessors associated with each memory server cluster, the worst
contention would be written as

Kworst = (αr + βM)(
n − mr

m
)

Thus, the EBMS runtime is

TEBMS (m, r) =
Rp

n − mr
+ ζ(αr + βM) (1)

1 ≤ ζ ≤
n − mr

m
Equation 1 bounds the performance of the algorithm and

predicts the optimum number of clusters for a given problem
size and architecture. By minimizing the upper bound over
the number of memory clusters, the application user can en-
sure a reasonable performance cost; however, the upper bound
minimum is unlikely to coincide with the actual runtime min-
imum given the complex nature of network and application
contention. Table 1 summarizes the relevant parameters used
in the performance model.

A few observations are readily apparent in the form of equa-
tion 1. We first note that the latency term, ζαr is negligible
relative to all other terms in practical situations. For a typical
network latency on the order of 10−6 seconds, the simulation
would need to employ hundreds of thousands of processors
and energy bands to generate an appreciable performance cost.
Even in such a large simulation, the latency cost would likely
be dominated by the tracking time. Second, we observe that
the optimal number of memory clusters m is typically located
far away from the extremes of the interval [1, n/mr] and largely
depends on the ratio of Rp/(βM).

To evaluate the model, we consider parameters in the space
of interest of large-scale reactor analysis. In this example, 1000
nodes of a Blue Gene/Q system were considered for a 250
million particle, 100 GB cross section computation. The Blue
Gene/Q installation has an effective unidirectional point-to-
point bandwidth β−1 = 1.8 GB/s and latency α = 3.53 µs.(10)

Figure 1 plots the expression TEBMS
Tclassic

for the upper and lower
bounds of the performance model over a range of memory
cluster counts. The model predicts reasonable performance of
the EBMS algorithm. For both 10 and 30 energy bands (10,
3.33 GB per memory process, respectively), the optimal upper
bound is less than 5 times slower than the classic algorithm.
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Figure 1: Performance model upper and lower bounds for a large
neutronics problem on the Blue Gene/Q architecture (n=1000,
r=10, M=100 GB, R−1 = 500 particles/sec, p=250 million)

Although the gap between the upper and lower bound is high
and thus the model is potentially impractical, one interesting
feature is that the gap is not large near the minimum. Therefore,
the model is a useful metric for bounding the optimal perfor-
mance. Further, the upper bound approaches the lower bound
at large memory cluster counts. The model is valid for n−mr

m ≥ 1
(1 tracking process per cluster), so the communication term in
the upper bound approaches the constant (αr + βM).

V. Numerical experiments

We seek to evaluate the accuracy of our performance model’s
upper and lower bounds over a range of reasonable application
parameters. Additionally, we want to optimize the number of
energy bands and memory clusters to minimize the performance
cost when compared to the classic replication strategy. Finally,
we evaluate the reasonability of such a cost when weighed
against the memory savings of EBMS.

1. Proxy application

To carry out our experiments we develop a simplified MC
proxy application that mimics the workload of the full algo-
rithm. It uses homogenized data from the Monte Carlo solver,
OpenMC,(11) to represent the key features of the full tracking
algorithm. The application is written in C/MPI and takes as
input the number of particles, the size of the cross section data
array, the number of energy bands, and the number of memory
clusters.

The application divides the tracking processors equally
among the memory clusters. Each tracking processor at the start
of each energy band posts an MPI_Recv() for the correspond-
ing memory processor in its cluster and waits for the request
for cross section data to be fulfilled. The tracking processors
then produce tracking rates by integrating each particle through
a series of randomly sampled interactions in a homogeneous
material. At each interaction particle absorption is determined
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Figure 2: Proxy application performance results from Vesta com-
pared to the performance model for R−1 = 500 particles/sec

probabilistically by a gross absorption rate probability, and en-
ergy group scattering probabilities are determined by an r × r
user-input scattering matrix, which is derived from execution
of OpenMC on a classic reactor benchmark calculation.(12)

2. Results

The proxy application was executed on Argonne National Lab-
oratory’s Blue Gene/Q “Vesta” system. We examined the 10
energy band case of Figure 1 with n = 1000, r = 10,M = 100
GB, p = 250 million neutrons. In the interest of avoiding
complex intra-node memory considerations, the tests ran with 1
MPI task/node. Figures 2, 3 plot the number of memory clusters
versus performance as the ratio over the classic algorithm.

In seeking to validate the model, we find that the empirical
results are in strong agreement with the predictions derived in
the previous section. The optimal performance of the proxy
application in Figure 2 was roughly twice that of the classic
algorithm, thus significantly excelling the worst-case prediction.
In general, the upper bound is seen to be highly conservative
on the Blue Gene/Q architecture. The gap between the up-
per bound and actual performance grows as the problem size
becomes smaller due to the increased weight of the commu-
nication term relative to the tracking term. Nevertheless, the
model establishes a reliable upper bound for the total runtime
that is independent of the underlying network layout and only
depends on the maximum point-to-point machine bandwidth
and latency.

The tracking rate of 500 particles/sec is a conservative figure
derived from the observed performance of the OpenMC code in
LWR analysis.(7) In high fidelity or multiphysics simulations,
one can expect slower tracking rates and thus smaller relative
communication costs in EBMS. However, it is worth consid-
ering how flexible the algorithm is for faster tracking rates.
Figure 3 shows the model predictions for the same problem
but an with an order of magnitude faster tracking rate. The
model becomes more pessimistic as the local tracking work
becomes less significant. However, we again observe that the
proxy application performance fares far better than the worst-
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Figure 3: Proxy application performance results from Vesta com-
pared to the performance model for R−1 = 5000 particles/sec

case prediction. Therefore, while it is always in the application
user’s interest to maintain a large ratio of local work Rp to data
movement work βM, the actual performance cost of EBMS
remains reasonable over a wide range of tracking rates typical
in LWR analysis.

VI. Conclusion

We have demonstrated a flexible algorithm which exploits basic
properties of neutron physics to make more efficient reuse of
memory in neutral particle Monte Carlo transport simulations.
The algorithm can adjust to a range of cross section memory
footprint sizes so that the user can optimally tune it for their
particular application. We carried out proof-of-principle tests
of our banding algorithm on a simplified proxy application that
models the key aspects of a full neutron transport code, using
as input scattering and absorption statistics from the OpenMC
code.

An analytic performance model based on the simulation
parameters and network characteristics was created for the
algorithm. Our results indicated that the bounds for the best
and worst-case performance are well-established and serve as
useful metrics near the performance minimum.

We note that there exist several potentially simple algo-
rithmic improvements. For example, creating hybrid track-
ing/memory processors and allowing tracking processors to
access any available memory cluster are application-specific
strategies that might yield significant speedup. Nevertheless,
this study shows that the most basic implementation of the en-
ergy band memory server algorithm is a worthwhile approach
to managing the memory burden while maintaining reason-
able performance. Future work with EBMS will examine the
complex concerns of topology-aware mappings and network
contention in exascale architectures.
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